Social Icons

Pages

Sunday, January 12, 2014

Jhudiel's Integer Scribe Post

If you're learning Adding and Subtracting Integers you got to know this first !
  • brackets
  • negative and positive (owe and have)
  • integer tiles
  • zero pair
  • number line
Use a number line when the integers are higher than 10

When you are adding Integers you need to use the words owe and have because it will make sense in your head. The zero pair is like battery because battery has + and - in each side but in integers when you see a + and - in your integer tiles you need to circle or highlight it to make it a zero pair.

Examples:

          (+9) + (-1) = +8
have 9 and owe 1 = have 8

     + + + + + + + + +
     -

          (-3) + (+2) = -1
owe 2 and have 3 = owe 1

           - - -
           + +

When you have higher number like positive 4321 and negative 1234 you need to use a number line.

(+4321) + (-1234) = +3087


                                   +4321
                               —>
                              0    +3087
 <————|—||——>
                                         <          
                                          -1234
                                                

(-4321) + (+1234) = -3087

                                                                                                                                                                                  -4321                                                                            
          <                                                                                        
              -3087        0                                                          
<——||——|———>
         —>                                                                           
         +1234                                                                                                                
      

Since you know how to add  integers now i will teach you how to subtract integers!
It's kinda complicated to subtract the integers but once you learn the "SECRET" pattern you will succeed to every subtracting question that you will encounter ! But do not ever rush the question !

Okay, I think there's 4 pattern but i will just show it to you guys.
Let's get to the removing part first
If you see a two negative sign like this " n - (-n) " you need to remove the negative    

You need to remove the 4 negatives and the 4 positive will stay because you removed the owe 4 which is -4.
                   +6 - (-4) = +10
have 6 remove owe 4 = have 10

+ + + + + +                 -  -  -  -
                                   + + + +


The ones that are highlighted with yellow is a zero pair.
If left side integer is less than the right side integer you need to subtract it by (higher negative integer - lower negative integer = positive integer)
                (-1) - (-3) = 2
owe 1 remove owe 3 = owe 2

-                         -  -  - <--- remove
                           + + + 


If it's both negative but the right side integer is higher than the left side integer you need to change the left side to positive and subtract it.
                 (-5) - (-3) = -2
owe 5 remove owe 3 = owe 2

- - - - -                -  -  -  <--- remove
                           + + +


Okay when you have (-n - n = -n) you owe the positive right integer

        (-9) - 1 = -10
owe 9 owe 1 = owe 10

- - - - - - - - -
-

When you are subtracting two positive integers it's easy ! You just owe the right side integer.

             8 - 7 = 1
have 8 owe 7 = have 1

+ + + + + + + +
-  -  -  -  - - -       <--- zero pairs

Another example

             7 - 8 = -1
have 7 owe 8 = owe 1

+ + + + + + +          <--- zero pairs
-  -  -  -  - - - -




I think that's all that I know ! Have a great day !

2 comments:

  1. awesome job Jhudiel !! your explanations are very detailed, its very helpful!
    it will be perfect if you add a video !
    have a great day ;-) !!!

    ReplyDelete
  2. Nice job! and i agree with Ceci. Overall, it was easy for me to understand and I didn't have any troubles solving it. Thanks and keep it up! (:

    ReplyDelete

 

Wikipedia

Search results

Creative Commons License